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1. (P.179 Q8)

Given ε > 0, since lim
x→a

f ′(x) = A, there exists δ > 0 such that for all y ∈ (a, b) such that a < y < a + δ,

|f ′(y) − A| < ε. We claim that the same δ works for the definition of differentiability of f at a: given any
x ∈ (a, b) such that a < x < a+ δ, since f is continuous on [a, x] and differentiable on (a, x), by Mean Value
Theorem (Theorem 6.2.4), there exists y ∈ (a, x) such that

f(x)− f(a)
x− a

= f ′(y)

Since y ∈ (a, x), a < y < a+ δ and hence

|f(x)− f(a)
x− a

−A| = |f ′(y)−A| < ε

Therefore, for all ε > 0, there exists δ > 0 such that for all x ∈ (a, b) with a < x < a+ δ,

|f(x)− f(a)
x− a

−A| < ε

Hence, f is differentiable at a with f ′(a) = A.

Remark: Many students argued that y tends to a as x tends to a, so lim
x→a

f(x)− f(a)
x− a

= lim
x→a

f ′(y) = A. This
is reasonable, but is not vigorous enough, since the notion of “tends to” can be made precise by using ε − δ
argument. Also, the latter equality is not immediate from assumption, as y is not a “free variable” since y de-
pends on x (and not necessarily continuously). It’s better to use the definition of limit as demonstrated above.

2. (P.179 Q11)

We will consider the function given in Section 6.1 Q10 in HW1:

g(x) =

x2 sin
1

x2
, x 6= 0

0 , x = 0

As shown in the solution of HW1, g is differentiable on R. We claim that g satisfies all the requirements of
this question:

(i) g is uniformly continuous on [0, 1] : since g is differentiable on R, by Theorem 6.1.2, g is continuous
on R, in particular on [0, 1]. Therefore, by Uniform continuity theorem (Theorem 5.4.3), g is uniformly con-
tinuous on [0,1].
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(ii) g is differentiable on (0, 1): this follows immediately from the fact that g is differentiable on R.

(iii) g′ is unbounded on (0, 1): this is demonstrated in the proof of unboundedness of g′ on [-1,1] in HW1.

Therefore, g is a function satisfying all the requirements of this question.

3. (P.179 Q15)

Since f ′ is bounded on I, there exists M ∈ R such that for all w ∈ I, |f ′(w)| ≤M .

To show f satisfies a Lipschitz condition on I, it suffices to show that there exists L ∈ R such that for
all x, y ∈ I, |f(x)− f(y)| ≤ L|x− y|

We choose L =M and claim that the above statement holds true: Given any x, y ∈ I,

Case 1: x = y: then |f(x)− f(y)| = 0 ≤ 0 = L|x− y|

Case 2: x < y: Since I is an interval, [x, y] ⊆ I. Since f is differentiable on I, f is differentiable on
[x, y], and by Theorem 6.1.2 f is continuous on [x, y]; also f is differentiable on (x, y). Therefore, by Mean
Value Theorem (Theorem 6.2.4), there exists c ∈ (x, y) such that

f(y)− f(x)
y − x

= f ′(c)

Hence, |f(y)− f(x)| = |f ′(c)||y − x| ≤M |y − x|.

Case 3: x > y: interchanging the roles of x and y and adopt similar argument as in case 2 (i.e. replac-
ing [x, y] by [y, x], etc.) , we have

|f(x)− f(y)| ≤M |x− y|

Therefore, for all x, y ∈ I, |f(x)− f(y)| ≤ L|x− y|, and hence f satisfies a Lipschitz condition on I.

Remark: Most students overlooked the case x = y. Although the argument is trivial, it is still essential
as this is the only case where Mean Value Theorem is not applicable; also, some students combined case 2
and 3 together by saying “...there exists c between x and y...”. This is ambiguous as it is not clear whether c
could possibly be x or y by saying so (in other words, whether the “between” is inclusive and exclusive). It is
better to split into cases for the sake of clarity.
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